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A semi-empirical SCF-MO theory is developed using the CNDO (complete neglect of differential
overlap) approximation, with atomic parameters derived previously from atomic valence-state energies,
interatomic electron-repulsion integrals calculated by the Mataga or Ohno formulae, and bonding
parameters calibrated using the bonding parameters of binary hydrides. Bonding energies of the other
molecules are calculated and found to be in much better agreement with experiment than those cal-
culated from either the Pople-Segal CNDO/2 theory or the Extended Hiickel Theory.

Es wird eine semiempirische SCF-MO-Methode unter vollstdndiger Vernachldssigung der
differentiellen Uberlappungen (CNDO) entwickelt. Kiirzlich an Valenzzustandsenergien angepaBte
Atomparameter werden verwendet, y-Integrale werden nach Mataga oder Ohno bestimmt, die
Bindungsparameter werden an experimentellen Daten der bindren Hydride justiert. Bindungsenergien
einer Vielzahl von Molekiilen ergeben sich damit besser als mit der CNDOQO/2- oder der erweiterten
Hiickel-Methode.

Une théorie semiempirique SCF-MO est développée en utilisant approximation CNDO
(négligence compléte du recouvrement différentiel), aussibien des parametres atomiques qui étaient
derivés des énergies d’état valence atomique, des integrals de la repulsion électronique interatomique
calculés selon Mataga ou Ohno, et des paramétres des liaison assimilés par des paramétres de liaison
d’hydrures binaires. Les énergies de laison pour des autres molécules calculées ainsi sont en meilleur
accord avec Vexpérience que les valeurs calculés & Paide des méthodes soit Pople-Segal CNDO/2
soit d’Hiickel étendue.

1. Introduction

Two types of approximate Molecular Orbital Theory have been applied to
all valence electrons in molecules; the independent electron molecular orbital
theory as typified by the Extended Hiickel Theory (EHT)[1], and the approximate
self consistent field molecular orbital theory (SCF-MOT) in which the Roothaan
equations are simplified by the zero-differential — overlap approximation (ZDO)[ 2]
in which the differential overlap is assumed zero except for the same orbital.

Pople, Santry and Segal [3, 4] recently extended the ZDO approximation
to molecular orbital calculations including all valence electrons, and considered
its effect on the invariance properties of the wave function [3]. It is possible to make
ZDO-type approximatiens which preserve the invariance of the wave function
to orthogonal transformations among orbitals centred on the same atom. The
simplest way is that of “complete neglect of differential overlap” (CNDO), in
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which, all differential overlaps of the form ¢%(l) ¢, (I) are assumed to be zero, even
when the two overlapping orbitals are centred on the same atom. A less drastic
approximation is that of “neglect of diatomic differential overlap” (NDDO), in
which the differential overlap of two orbitals is assumed to be zero only when
they are centred on different atoms. However, NDDOQ has not yet been used in
molecular calculations.

The intermediate INDO theory differs from the CNDO theory in the reten-
tion of the one-centre exchange integrals, and has been used to study small mole-
cules and hydrocarbons [ 5-8].

Pople and Segal [9, 10] have used the CNDQO approximation in molecular-
orbital calculations on a number of small molecules, and compared the calculated
charge distributions, dipole moments, equilibrium configurations and force
constants with those obtained from the exact Roothaan equations, as well as with
experiment. Santry and Segal [4] have extended this work to molecules containing
atoms in the second row of the periodic table, and included the 3d orbitals of these
atoms in the basis set. The CNDO approximation has also been used recently to
study dipole moments of organic molecules [11], hyperfine coupling constants
in sigma-electron radicals [ 12], and the electronic excited states of small molecules,
and of benzene and ethylene [13].

In this paper, calculations are made using the CNDO approximation, as
formulated by Pople and Segal [ 10]. However, the parameters in the Hamiltonian
matrix elements are evaluated by different methods.

The Hamiltonian matrix elements are [9]

Fu=Us+Paa—3P)vaa+ Y, (Peg7as+ Vap) (1)
B7A
and
Fu=—3BR+BY) Suu—%Puvan, k#I )

where the population matrix Py, is
Pklzzzcl’fi Cy.

The orbitals ¢, und ¢, are on atoms A and B respectively. P,, is the total
valence-shell electronic charge on atom A, defined by

A
PAA=ZPkk' (3)
k

The summation extends over all valence-shell orbitals on the atom. U,, is the
diagonal matrix element of the k™ orbital on atom A with respect to the kinetic
energy and to the potential energy of the core of atom A; y,p represents “an
average repulsion between an electron in a valence atomic orbital on A and
another in a valence orbital on atom B” [3].

Vg 1s the interaction of an orbital on atom A with the core of atom B, and must
be given the same value for all orbitals on atom A in order to preserve the invariance
of the Roothan equations to atomic transformations [3].

B3 and Bg are bonding parameters characteristic of atoms A and B respectively,
and S,, is the overlap integral,

Su= [ ()¢ (1)dV,. “
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The atomic parameters detived from atomic spectra using valence-state ener-
gies were derived in Part 1 [147. In this paper the interatomic parameters, defined
only with reference to molecules, are derived. The calculated molecular orbital
energies are compared with experimental ionization potentials, using Koopmans’
theorem in Part 3. Atomization energies of molecules are also considered, although
they are given less accurately than the ionization potentials by approximate
theories, since they represent small differences between two large quantities. They
are sensitive to variations in °, and are used to evaluate them.

Dipole moments are considered in Part 4; also dealt with are nuclear quadru-
pole coupling constants, which depend upon charge distribution, although less
directly than dipole moments.

2. Evaluation of Interatomic Parameters

In Sections 4 and B, the evaluation of the interatomic parameters of the diago-
nal matrix elements Fy; is described: Section A deals with the interatomic electron-
electron repulsion integral, y,5, and with the interatomic electron-core attraction
integral, V,5. The overlap integrals, S,,, and the bonding parameters, 3, in the
off-diagonal core matrix elements, Hy,, are dealt with in Sections B and C respec-
tively.

A. Interatomic Electron-Electron Repulsion Integrals

The repulsion between an electron in the k™ orbital of atom A, and one in the

7' orbital of atom B is formally defined as

T = (k| rr) = § O (1) di(1) ;-f: ¢r(2) ¢,(2)dV, dV, ©)

which may be evaluated for orbitals of a specified functional form. The y,, may
then be averaged in some way to evaluate y,5. Pople and Segal [9, 10] equated y g,
for each pair of atoms, to the integral defined by equation (5) for valence-shell
Slater’s orbital, evaluated using formulae listed by Roothaan [15].

The CNDO approximation, however, is analogous to the ZDO approximation
in m-clectron theory, which is in better agreement with experiment if the inter-
atomic electron-repulsion integrals, as well as the atomic ones, are reduced below
their theoretical values [16, 17]. This is necessary because of the correlation be-
tween electrons on different atoms [16, 18-22]. The interatomic electron-re-
pulsion integrals in the SCF-MO-CNDO theory have therefore been evaluated
by empirical formulae similar to those which have been proved successful in
n~electron theory, with the ZDO approximation [17, 23—-25]. This procedure is
tested by comparing physical properties, calculated using both the empirical and
the theoretical interatomic electron-repulsion integrals, with experiment.

In the semi-empirical n-electron theory, the interatomic electron-repulsion
integrals, y,,, are functions of the internuclear distance, and of the atomic electron-
repulsion integrals of the two atoms. These functions behave as follows [17,23~-25]:

(i) As the internuclear distance approaches zero, the value of 7y, for two
n-orbitals of similar atoms approaches the atomic electron-repulsion integral,
Yu» for a m-orbital of either atom, while for dissimilar atoms it approaches the
arithmetic mean of the atomic electron-repulsion integrals for the n-orbitals of
the two atoms.



SCF-MO-CNDQO Theory. II 223

(i) As the internuclear distance becomes infinite, the effect of correlation
becomes small, and each electron-repulsion integral approaches its theoretical
value, which is, at infinite distance, the electrostatic repulsion of two point charges.

These conditions may be expressed mathematically as

lim
Ri—0 =120+ 7m) (6)
and
lim
Rupg— 0 7, =1/Ryp (7)

where the k'* and r*™® orbital are on atoms A and B respectively. The Pariser-Parr
formula is suitable only for n-systems and is not considered here [17].

Several other formulae for the interatomic integrais have been suggested, which
have the correct asymptotic behaviour, and can be used at all internuclear distances.
Mataga [23] used the formula

1 2

= —, a= ————— . (8)
Ragta Vie T Vrr

Prr
In conjugated molecules [26], equation (8) leads to smaller y,, than the Pariser-
Parr formula. Bloor and Brearley [27] have found that the use of equation (8)
leads to more accurate predictions of the electronic spectra of alternant hydro-

carbons.
Another formula is that of Ohno [24]:

Y=y, 4= —— ©)
“ |/Ris+a’ ’ Ve T Ve

For conjugated hydrocarbons [26], equation (9) leads to values of v, about
equal to those found from the Pariser-Parr formula, in the range of R,z in which
their equation is applied. These two formulae provide a representative sample of
the values of y;, used in semi-empirical molecular orbital calculations on =-
electron systems [26].

Miller et al. [28] used theoretical interatomic electron-repulsion integrals, but
modified the Slater exponent of the orbitals so that the atomic electron-repulsion
integrals agreed with semi-empirical values, derived from atomic spectra. This
implies that the effects of correlation, and reorganization of the g-electrons, may
be accounted for by using “effective atomic orbitals” more diffuse than actual atomic
orbitals. However, interatomic electron-repulsion integrals evaluated by this
method are almost identical [297] to those found from Ohno’s formula, and will
not be considered separately.

Three different ways of estimating electron-repulsion integrals are compared
here:

(i) All the electron-repulsion integrals, both atomic and interatomic, are
calculated by evaluating the theoretical integral, equation (5) for valence-shell s
orbitals, as in the work of Pople and Segal [9, 10].

(i) Atomic electron-repulsion integrals are evaluated from valence state
energies [14] and interatomic integrals by the Mataga formula [23], which is
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here adapted to calculations including all valence electrons.
S S
Rygt+a’ VAat VBB
where y%, and y§g are atomic limits, defined in Paper 1 of this series [14].

(iii) Atomic integrals are evaluated as described in Paper 1 [14], and inter-
atomicintegrals by Ohno’s formula[24], modified to apply to all valence electrons.

?AB:*I——, a=—~2——_ (1D
|/ Ris+a’ YXa + VBB

In this series, molecular properties are computed, using electron-repuision

integrals evaluated by all three methods. It is shown that methods (i) and (iii)

are significantly better than method (i). This justifies the use of electron-repulsion

integrals derived from atomic spectra. The core attraction integrals V,p are

evaluated from V, 5 = — Z5 745 as in the CNDO/2 theory [10] so that the penetra-
tion integrals vanish.

(10)

YaB

B. Ouerlap Integrals

Overlap integrals for Slater orbitals, of principal quantum number 1,2,3 or 5
may be evaluated analytically by the methods of Mulliken et al. [37]. The orbital
exponents Z' and the effective principal quantum numbers n’ are given by Slater’s
rules [30].

In the hydrogen atom, there is no screening, so Zy = Z; = 1, and the Slater or-
bital is identical to the exact wave function. In the hydrogen molecule, however,
it has been found [31] that the lowest energy for an LCAO-MO wave function is
obtained for Z;;=1.2. Also, in accurate molecular calculations for other mole-
cules [32], using the Roothaan equations, in which the hydrogen exponent has
been varied, the value Zy = 1.2 leads to lower energies than Zj; = 1.0. Physically,
this is due to the fact that the contraction of the hydrogen orbital leads to more
stable bonding [33]. Pople and Segal [9, 10] used Z = 1.2, but Hoffmann [1]
in the Extended Hiickel Theory used Zj; = 1.0. In the paper both values are used,
and a comparison is made on the basis of computed physical properties. It will be
shown that Zy = 1.2 is preferred in the semi-empirical SCF-MO-CNDO theory,
since it leads to more accurate bonding energies.

For n= 4, the radial function, according to Slater’s rules is [30]

R4 N=N r2.7 e—Z’r/3.7ao . (12)
4

Overlap integrals for such an orbital cannot be evaluated analytically, because
of the non-integral power of r, which is present as a factor. This difficulty can be
avoided by using an approximate orbital, which is a linear combination of orbi-
tals for which overlap integrals can be evaluated. The approximate combination
is obtained by assuming that R, can be interpolated between R; and R in the
same way that the corresponding n’ is interpolated. Two forms for the approximate
orbital were tried:

RN =N} (03R; +0.7Rs) =N/, (0372 727390 10773 ¢~ 7714%0)  (13)

and ,
Wr)=N5(037r%+0.7r%) e~ 237 (14)
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where the N’s are normalization constants. The accuracy of these approximations
to equation (12) may be examined by computing their overlap with the Slater
orbital. The required overlap integrals are one-centre integrals, and can be com-
puted using gamma functions. The overlap integrals of R, with R}, and R} are
0.99651 and 0.99979, respectively, showing that these simple interpolations are
quite justified. In computations for orbitals with n=4, R,(r) has been replaced
by R (r), themore accurate ofthe two approximations. The value of N is 1.01384531.

Leifer, Cotton and Leto [34] used series expansions of 8—10 terms each to
approximate overlap integrals involving R,, but the simpler method proposed
here should be as good, since R} is such a close approximation to R,.

C. Bonding Parameters

No provision has yet been made for empirical evaluation of any of the para-
meters of the theory, using molecular properties. It was therefore decided to eval-
uate empirical bonding parameters for each element.

There are several molecular properties which could be used to evaluate the
bonding parameters. In the Pariser-Parr theory of n-electron systems [17], the
core resonance integral was evaluated using electronic spectra, while Pople [35]
was concerned with ground state ionization potentials, clectron affinities, re-
sonance energies, and charge distributions. Dewar and Gleicher [36] have pointed
out that, in a semi-empirical theory, ground-state properties should be calculated
with parameters evaluated from ground-state properties, since the use of para-
meters cvaluated from electronic spectra may include a correction for effects
present only in excited electronic states.

In these papers, ionization potentials, molecular bonding energies, dipole
moments, and nuclear quadrupole coupling constants have been computed from
the SCF-MO-CNDO theory. Preliminary calculations showed that the bonding
energies are most sensitive to variations in the bonding parameters (Table 1).
The following procedure was therefore used to evaluate the bonding parameters:

(i) The bonding parameter for hydrogen, 5, was chosen to give the correct
dissociation energy for the hydrogen molecule. For hydrogen, the bonding mole-
cular orbital is determined by symmetry to be

_ $it 9,
V=

The dissociation energy is (as shown below)
Dezzﬁgsu"‘%(%z“?u) (16)

which may be equated to the experimental value, 4.751 €V to find B3, for a given
choice of the interatomic electron-repulsion integrals, and of the hydrogen ex-
ponent (which determines the overlap integral S,,).

(i) The bonding parameters for other elements were chosen to give the correct
bonding energies of binary hydrides, AH,,. The binary hydrides were chosen as the
reference molecules because they form a series including a molecule for each ele-
ment of interest. The bonding energy of cach hydride, AH,, was computed for a
range of values of the bonding parameter, f%. The details of this calculation, and
the variation of the atomization energies with 8%, are shown below.

(15)
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The chosen bonding parameters, which give the experimental bonding energies,
have been rounded off to the nearest tenth of an electron volt, since greater pre-
cision would be inconsistent with the precision of most of the experimental bonding
energies. Table 2 lists the bonding parameters for each choice of electron-repulsion
integral and hydrogen exponent.

Since the bonding parameter for each element is evaluated with reference to
its hydrides, it depends on the value of the hydrogen exponent, so that the results
of calculations on molecules, which do not contain hydrogen, depend indirectly
on the choice of the hydrogen exponent in the calibration. It will be shown,
however, that the value Zj = 1.2, and the corresponding bonding parameters,
lead to more accurate molecular energies.

Table 2. Bonding parameters B3 (in eV)

Code* M1 M2 01 02 R1 R2 PSs®
g Atomic Empirical® Empirical Empirical Theoretical? Theoretical —Theoretical Theoretical
& parameters
E Interatomic Mataga*® Mataga Ohnof Ohno Theoretical! Theoretical Theoretical
E VaB
™ Hydrogen 10 12 10 12 1.0 12 1.2

exponent Zy,

Evaluation Empirical® Empirical Empirical Empirical Empirical Empirical  Pople and Segal®

of g3

H 49 54 39 43 54 52 9

Li 04 0.7 -09 -0.8 25 3.8 9

Be 3.8 4.0 32 34 43 52 13

B 5.8 5.6 52 50 62 6.5 17

C 8.7 82 7.8 73 9.1 9.0 21

N 9.6 8.8 8.0 73 112 10.6 25

(0] 14.2 12.8 11.7 105 16.1 14.7 31

F 19.2 17.2 15.7 14.1 22.6 204 39

Si 5.0 52 4.6 4.7

P 6.0 6.0 53 53

S 6.7 6.5 5.8 5.6

Cl 9.3 8.9 8.1 7.8

Ge 43 4.4 3.8 4.0

As 4.6 4.7 40 41

Se 5.7 5.7 50 49

Br 73 72 6.4 6.3

Sn 34 36 1.9 2.1

Sb 4.5 4.7 39 4.2

Te 57 6.1 5.1 54

I 6.5 6.7 58 6.0

* Arbitrary code for parameter set.

b CNDO/2 Method of Pople and Segal [10].

¢ From atormic spectra as described in Part 1 [14].

¢ From theoretical integral formulae of Roothan — first row only.

¢ From Eq. (10).

[

From Eq. (11).
2 From hydride bonding energies as described in text.
b By comparison with minimal-basis set calculations by Roothaan method.
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The negative bonding parameter for lithium, for interatomic electron-repulsion
integrals given by the Ohno approximation, indicates that the arithmetic mean of
bonding parameters, used for H,, {97, breaks down in this case. The use of a geo-
metric mean would resolve this particular difficulty, but it would require exten-
sive computation to show that a geometric mean is better for all molecules. Also,
the geometric mean does not have a theoretical basis. In this series the arithmetic
mean has been used, and the bonding parameter for lithium has been treated
like the others, even though it has the wrong sign.

Table 2 also lists the Pople-Segal [9] bonding parameters for hydrogen and the
first-row elements. The values of Santry and Segal [4] for second-row elements are
not included, since they were published after the completion of the work described
here. These parameters were chosen by comparing the coefficients of computed
molecular orbitals, and the differences between orbital energy eigenvalues, with
those obtained by accurate solution of the Roothaan equations for small mole-
cules [9]. They are much larger than the empirical bonding parameters. A detailed
comparison of the two sets of bonding parameters for first-row atoms is made
by calculating molecular physical properties. It is noted here, however, that the
empirical values are more consistent with the values of core resonance integrals
in m-electron theories. For carbon, for example, Pople [35] showed that the re-
sonance energy of benzene is correctly given for a carbon-carbon core resonance
integral of 2.13¢V. Since the overlap integral between two carbon sn-orbitals
at the nearest-neighbour distance in benzene is 0.248 [37], this corresponds to a
carbon bonding parameter of 8.6 ¢V.

Clark and Ragle [387] have recently assigned the value 11.15 eV for the bonding
parameter of carbon in order tofit the electronicspectra, but they have not proposed
a general empirical scheme for the evaluation of bonding parameters, as is done
here, nor tested their value in calculations on a wide variety of molecules.

The exact electronic energy of a molecule can be written as [39]

Eelect = EHF + Ecorr + Vnn (17)

where Eyy is the Hartree-Fock energy for the best single-determinant wave func-
tion and E_,,, is the correlation energy. In the semi-empirical theory described
here, the parameters are adjusted to give the correct bonding energies, including
correlation energy, even though the wave function is a single determinant.

In order to determine the bonding energy of a molecule accurately from a single-
determinant wave function, without using empirical parameters, it would be
necessary to first determine Eyy from a complete SCF-MO calculation, and then
either to calculate the exact energy by superposition of configurations [39], or
to estimate the correlation energy, as in the approximate theory of Hollister and
Sinanoglu [40]. The present method is much simpler, however, and can therefore be
applied to larger molecules. Its validity is tested by examining the accuracy of
bonding energies calculated in this way for molecules other than those used in
the calibration of the bonding parameters.

3. Calculation of Bonding Energies from the SCF-MO-CNDO Theory

For a closed shell molecule with a single-determinant wave function the total
electronic energy [35, 3] is
Epu=3UPH+Y E+7V,, (18)
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where P is the population matrix, H the core Hamiltonian matrix, E; the orbital
energy eigenvalue and V,, the expectation value of the internuclear potential
energy for a fixed nuclear configuration. Hence the bonding energy [41] is

EB= ZEA_Etotal . (19)
Thus A
EB = Z EA - Ee - Vnn (20)
A
where )
Eez%trP(H+F)=%trPH+ZEi. 21

The atomic energy, E,, is the energy to remove all the valence-shell electrons
from atom A, and E, the energy to remove the valence-shell electrons from the
molecule. The successive ionization of electrons, from both atoms and molecules,
requires increasing amounts of energy because:

(i) the electrostatic repulsion of other electrons acting on the electron to be
ionized decreases. This effect is incorporated into any SCF theory, since the varia-
tion of the electrostatic potential with charge distribution is explicitly included.

(ii) aselectrons are removed, the remaining electrons are less screened from the
nucleus. The orbitals are re-organized with a greater probability density near the
nucleus, and the expectation value of the nuclear attraction is increased. This
effect is not accounted for in SCF-MO calculations with a minimum basis, since
the orbital parameters are assigned fixed values. The parameters evaluated from
atomic spectra [14] are valid only for valence states close to electroneutrality.
If the energy required to remove all the valence electrons from an atom is cal-
culated from these parameters, it differs from the sum of experimental ionization
potentials by [44], for example, 24.5 eV for C, and 171.0¢V for F.

If, in calculating the bonding energy from equation (20), atomic energies were
equated to the sum of the appropriate experimental ionization potentials, the
effect of orbital reorganization would be included only in the atomic energy, and
not in the molecular energy, so that the bonding energy would be seriously in
error. Therefore the atomic and molecular energies must be calculated using the
same approximations and parameters, so that the errors cancel.

In the CNDO approximation, the energy of an atomic state is

E:c°+;nk U,ﬁ%@ nk) (‘k; nk—1> Yan (22)

where n, is the number of electrons in the k'* orbital, and the summations extend
over all the valence-shell orbitals. Relative to the core state, when C°® becomes
zero, and for a state with n; s-electrons and n, p-electrons, this becomes

E=nUs+n,U,,+0+n,)(n+n,— 1) sy (23)
The internuclear potential energy, V,,, is [3, 10]
Vnn = Z ZAZBIQ./;B1 . (24)
A>B

The net electrostatic interaction between any two atoms is consequently

Exg="V,n+ Paa Vap+ Pap Vea -+ Paa Pop 7an (25)
where

Vap= —Zp Vg - (26)
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Thus for two neutral atoms, with atomic populations P,, and Py equal to the
atomic core charges Z, and Zg, the use of the pointcharge expression, equation
(24), leads to a net electrostatic repulsion,

E3p=ZAZg(R35 —7an) 27)
which makes it impossible to predict accurate bonding energies for any reason-

able choice of parameters.
The matrix elements H,; and H,, for hydrogen are [10, 9]

Hyy=U =712 (28)
and o
Hi;=—PuSis- (29)
Combining these with equations for F,, and F,,, where F;;=U,; +4%y;, and
F,, = —B°S;,—417,,, the electronic energy is
E,=2Uy;+ 5711 — 3712~ 2B 812+ Vi (30)
and the bonding energy is
Eg=2BaS+3712— 5711~ Vi (31)

since for hydrogen, the atomic energy Ey equals the local core-Hamiltonian matrix
element U,,. If the internuclear potential energy has the point-charge form, the
bonding energy is then

Eg=2B2S+37,— 5711 —Rj3 - (32)

If Eq. (32) is solved simultaneously with the equation for the ionization po-
tential of hydrogen (Paper 3),

I=7171+ BSS+ 44, (33)

then for the experimental bonding energy and ionization potential, with y,;
determined from the Pariser approximation [45], and Zy=1.2, the interatomic
electron-repulsion integral y,, equals 28.052eV, and the bonding parameter
B% is —5.748 eV. These values are absurd, however, since 7, , is much higher than
even the theoretical y,; for hydrogen, 20.408 ¢V, and the bonding parameter has
the wrong sign, which implies that the anti-bonding orbital is the occupied orbital.

If, on the other hand, the bonding parameter is chosen to give the correct
dissociation energy for reasonable values of y,,, then the bonding parameter is
14.074 ¢V, and 10.759 eV, when v, , is determined by the Mataga, and by the Ohno
formula respectively. The calculated ionization potentials are then 20.53 eV, and
19.78 eV, in the two cases, in very poor agreement with the experimental value of
1545eV.

The point-charge form for V,, is therefore unsatisfactory. Dewar and Klop-
man [6] have suggested that this is because the method of assignment of atomic
parameters fails to allow for the reorganization of atomic orbitals, and changes
in the effective nuclear charges, upon molecule formation, and that this error
must be compensated by altering the form of V.

The simplest satisfactory assumption is that the net electrostatic interaction
between two neutral atoms, ESy, vanishes, so that

Van= Z ZxZyyan (34)

A>B
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as assumed by Chung and Dewar for n-electron systems [51]. The electrostatic
interaction between any two atoms is then simply the interaction of net charges.

Epp=(Pap—Z,) (Pgg—Zg) Yan - (35)

With this choice of V,,, accurate bonding energies and ionization potentials
can be obtained for reasonable parameter values. For hydrogen, substitution of
Eq. (33) into Eq. (30) leads to the bonding energy

EB=2ﬂgS+%(y12—y11) (36)

which may be solved simultaneously with Eq. (32) for the ionization potential to
give 7,, =10.766 €V and g =4.293 eV (for Zy=1.2).

Dewar and Klopman [6] have objected to the use of Eq. (34) in calculations
including all valence electrons, since they have found that a net repulsive inter-
action between neutral atoms at short internuclear distances is necessary in order
to predict potential energy minima. In this paper, however, it is found that Eq. (34)
leads to satisfactory prediction of bonding energics at experimental bond lengths.

The final formula used to compute bonding energies from the semi-empirical
SCF-MO theory is found by substituting Eq. (18) and (34) into Eq. (20) so that

EBZZEA_%trPH—ZEi_ Z ZpZy)an @37
A i A>B
where E, is given by Eq. (23).

4. Comparison of Calculated Bonding Fnergies with Experiment

The experimental data for bonding energies were taken from the JANAF
Interim Thermochemical Tables [47] and anharmonicity corrections were neg-
lected, since the effect on Eg is only 0.004 eV in hydrogen, less for other diatomics
[47], and unknown for most polyatomics.

For molecules not listed in the JANAF tables, the vibrational frequencies
were taken from Herzberg [46, 48] and the heats of formation at 298 °K were
taken from National Bureau of Standards data [57] for BrCl, ICl, C,H,, C;H,,
ICN, CH;CN, CH,CI, CH;Br, and CH;l. The heats of formation of Group IV,
V, VI hydrides were determined by Gunn and Green [49] using an explosive de-
composition method, and the dissociation energies of CIF, BrF, and IF were
found from appearance potentials by Irsa and Friedman [50].

The vibrational energy of propane was extrapolated from that of methane and
ethane, since the vibrational frequencies are not all known [48]. The unknown
vibrational frequencies of IF and BrCl were assumed to be equal to the arithmetic
mean of the corresponding pure halogen frequencies, since this approximation
is accurate within 50 cm ™! for the other four interhalogen molecules [47, 57].

The experimental bonding energies of the binary hydrides used to calibrate
the bonding parameters have been rounded off to their probable precision. For
other molecules, the bonding energies are given to 0.001 eV from the experimental
data, although this exaggerates their precision in many cases.

Bonding energies calculated from SCF-MO theory using empirical bonding
parameters are shown in Table 3, for molecules other than those used in calibra-
tion. The energies are fairly accurate on the whole, in contrast to those calculated

16 Theoret. chim. Acta (Berl,) Vol. 11
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using the Pople-Segal bonding parameters so that the theory includes correla-
tion energy reasonably accurately.

The bonding energies calculated for Z3; = 1.2 are more accurate than those for
Zy; = 1.0. When electron-repulsion integrals evaluated from atomic spectra are used,
the bonding energies for Zj; = 1.2 (Columns M 2 and 02) are more accurate for all
the molecules considered, except SO,, I,, IF, IBr, CH;l, and (for interatomic y,5
calculated from the Mataga formula only) LiF. When theoretical electron-re-
pulsion integrals are used, more accurate bonding energies are predicted for
Zy=1.2 (Column R2), except for LiF, CH,F, and F,. The value 1.2 is therefore
chosen as the better value for the Slater exponent of hydrogen in the SCF-MO
calculations.

Table 3. Bonding energies calculated by SCF-MO theory with CNDO approximation and empirical
bonding parameters

Parameter M1 M2 o1 02 R1 R2 Exptl.
set (eV)
N, 12.325 10.480 12.402 10.839 12.997 11.566 9.903
CcO 13.838 11.931 13.798 12.166 14.136 12.579 11.225
CS 8.093 7414 8.660 7.970 7.190
CO, 22.032 18.981 21.310 18.592 22.578 20.160 16.856
0OCS 16.142 17.968 15.984 14417
CS, 14.154 13.012 14.262 13.090 11.980
NNO 17.401 14.986 18.899 16.634 11.724
SO, 11.085 9.494 11.255 9.761 11.177
0, 11.995 9.804 11.009 9.034 6.345
C,H, 19.333 17.724 19.969 18.264 20.003 19.448 17.530
C,H, 25.290 24.250 25.609 24.366 25.169 24.831 24357
C,H, 31.603 31.032 31.650 30.799 31.077 30.867 30.818
C;Hg 46.431 45.230 46.250 44.705 45.699 45.373 43.563
B,H¢ 28.657 27.706 27.523 26.580 28.398 27.652 26.004
LiF 5970 5.551 6.557 6.290 4.101 3.822 5.940
F, 2.887 2.060 2627 1.983 0.991 0.064 1.653
Cl, 3.491 3.178 3.398 3.170 2.508
Br, 2.767 2.687 2.774 2.695 1.991
1, 1.677 1.837 1.750 1.907 1.557
CIF 3.882 3.191 3.604 3.079 2.668
BrF 3.369 2.799 3216 2.778 2.682
BrCl 2997 2.804 2977 2,826 2334
IF 1.524 1.153 1.570 1.295 291
ICl 2.382 2.307 2.405 2.368 2.190
IBr 2.162 2.201 2.212 2.251 1.928
CH,F 19.558 18.634 19.126 18.234 18.813 17.847 18.384
CH,Cl 17.680 17.329 17.669 17.211 17.154
CH,Br 16.808 16.608 16.891 16.532 16.640
CH,1 15.789 15.733 15.944 15.727 15.931
HCN 16.113 14.705 16.367 14.996 16.410 15.603 13.537
CH,;CN 30.866 28.710 26.586
FCN 19.703 17.167 19.265 17.113 20.114 18.199 13.529
CICN 15.262 17.159 15.468 12310
BrCN 16.051 16.183 14.589

ICN 14.868 13.333 15.094 13.658 11.159
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On comparing the results in Table 3 for Z;; = 1.2 and different choices of elec-
tron-repulsion integrals, the bonding energies calculated using theoretical integrals
are less accurate than those calculated using integrals evaluated from atomic
spectra, except for C,H, and B,Hg, for which the bonding energies calculated
using theoretical integrals are more accurate than those obtained using the Mataga
formula, but not the Ohno formula.

Table 4. Bonding energies calculated by SCF-MO theory with CNDO approximation and Pople-Segal
bonding parameters

Parameter set MP* op? RP? Experimental (eV)
H, 14.700 13.209 14.398 4.751
LiH 9.542 10.509 7.987 2.6
BeH, 25117 27.240 23.591 6.9
BH, 44931 48.392 43.312 12.1
CH, 62.505 67.602 61.033 18.18
NH; 47.787 52.018 45.279 12.93
H,O 32552 35.672 31.020 10.06
HF 17.639 19.271 16.366 6.11
N, 51.344 55.082 48.316 9.903
CO 46.269 49.706 44.377 11.225
CO, 78.196 83.951 74.404 16.856
NNO 76.386 82.387 70.354 11.724
0O, 45767 50.183 38.955 6.345
C,H, 79.055 85.021 78.328 17.530
C,H, 96.015 103.204 93.889 24.357
C,H, 113.428 121.945 110.297 30.818
C,;H, 167.580 179.622 163.209 43.563
B,H¢ 110.206 117.628 105.457 26.004
LiF 15.955 17.300 12.639 5.940
F, 11.672 12.850 8.308 1.653
CH,F 66.474 71.449 63.159 18.384
HCN 63.955 68.801 61.784 13.537
CH,CN 118.383 126.709 114.546 26.586
FCN 73.472 78.570 69.548 13.529

* MP Mataga y,g, Pople and Segal bonding parameters.
OP Ohno y,3, Pople and Segal bonding parameters,
RP Theoretical y,5, Pople and Segal bonding parameters.
Zy =12 in all calculations.

The bonding energies do not provide a conclusive choice between the Mataga
and Ohno formulae for interatomic electron-repulsion integrals, since each leads
to more accurate bonding energies for about the same number of molecules. As
in the calculation of molecular ionization potentials, it seems that the exact values
of the interatomic integrals do not matter, provided that the atomic integrals,
and the atomic limit of the interatomic integrals, are evaluated from atomic spectra.

Table 4 shows that the Pople-Segal bonding parameters are completely in-
adequate for the calculation of total molecular energies, since the predicted bonding
energies are higher than the experimental by factors ranging from 3 to 8. The
16*
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bonding energies calculated using theoretical electron-repulsion integrals (Co-
lumn RP) are slightly better than the others, MP = Mataga and OP = Ohno) but
the difference is negligible in view of the magnitude of the errors of all the cal-
culated energies in Table 4. It should be noted that, since the bonding energies
are too high rather than too low, the errors cannot be blamed on the omission of
correlation energy, but are due simply and solely to the large values of the Pople-
Segal bonding parameters [9].

5. Comparison with Extended Hiickel Theory

In the Extended Hiickel Theory, E, cannot be evaluated from Eq. (21),
since the one-electron Hamiltonian, h%, is not separated into core and electron-
repulsion terms. Hoffmann and Lipscomb [1, 527 equated the total electronic
energy of closed-shell molecules to twice the sum of occupied orbital energies,
as in the Hiickel n-electron theory [53, 54].

Eelect =2 ZEL . (38)

From Eq. (38) and (19), the bonding energy is given by
' Eg=Y E,—23E,. (39)
A i

The internuclear potential energy, V,,, is not included in this calculation of the
bonding energy, since Hoffmann [1] found that the EHT predicts potential energy
minima for most stable molecules (although not hydrogen), which vanish when
V,, is included. He assumed therefore that

“the method of guessing the matrix elements simulated within the electronic
energies the presence of nuclear repulsions at small distances,” [1]

and suggested that this effect is due to a rough cancellation of electron-electron
and nuclear-nuclear repulsions, neither of which is included explicitly in the EHT.
Allen and Russell [55] have shown that bond angles are predicted correctly from
Hartree-Fock calculations, using a simple sum of orbital energies as in Eq. (38),
except for highly ionic molecules; so that the EHT may also be expected to predict
bond angles correctly. This does not apply, however, to bond lengths [55].

As in the SCF theory, the atomic and molecular energies must be calculated
using the same approximations and parameters, so that there is a cancellation of
errors in the bonding energy. By analogy with Eq. (38), the valence-shell energy
of an atom with n, s-electrons and n, p-electrons is

EA = Ny hss +n h (40)

P pp "
Hoffmann and Lipscomb [1, 56] have used instead
EAz(ns— 1) hss+(np+ 1) hpp (41)

for boron and carbon, since they found that the ratios of bonding energies for
different boron hydrides are correctly predicted using Eq. (41) in a preliminary
calculation [56] with all off-diagonal matrix elements given by

hk[:KSkl H K=21 eV. (42)
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This procedure is not justified, however, since Eq. (40) and not Eq. (41) refers to
the ground state of an atom. Table 5 shows that the procedure of Hoffmann and
Lipscomb is not only theoretically invalid, but also leads to much less accurate
bonding energies than are obtained using Eq. (40).

The bonding energies calculated using the Extended Hiickel Method are
given in Table 6. The results for some molecules are quite accurate, but the theory
is seriously in error for the binary hydrides, and especially hydrogen, just as in
the prediction of ionization potentials. For the hydrides, the differences between
the results for the two values of Zy are insignificant in view of the errors. For
organic molecules, however, the bonding energies are predicted relatively accu-
rately by the EHT, and the values for Z; = 1.0 (Column H 1) are more accurate

Table 5. Comparison of EHT bonding energies (Zy = 1.0) with those calculated as per Hoffmann and
Lipscomb

This work  As per Hoffmann  Experimental (eV)
and Lipscomb

CH, 19.552 29.291 18.18
C,H, 19.792 39.270 17.53
C,H, 24.883 44.361 24.36
C,Hg 30.781 50.259 30.82
C;Hg 42,037 71.254 43.56
BH; 16.398 22.889 121
B,H, 23475 36.457 26.00

than those for Zy = 1.2. Thus it seems that the best value for the Slater exponent
of hydrogen in molecules is 1.2 in the SCF-MO theory as claimed by Pople
and Segal [9], and 1.0 in the EHT, as used by Hoffmann [17. Since the value of Z}
determines the behaviour of the molecular orbitals near a hydrogen nucleus, it
should not depend on the theory used to calculate the orbitals, but the difference
is probably due to a cancellation of errors in one theory or the other.

It is interesting to compare the bonding energies for BH; and B,Hg in the two
theories. In the SCF-MO theory, the bonding energy of B,H¢ is predicted as
accurately as that of many other molecules, despite the possible uncertainty due
to the use of the unstable molecule, BH;, to calibrate the bonding parameter for
boron. The EHT, on the other hand, predicts incorrectly that B,H, is unstable
with respect to BHj, even though the EHT was originally developed for calcula-
tions on boron hydrides [56, 52]. This is another example of the unreliability of
the EHT.

In summary, therefore, the best of the theories considered for the calculation of
bonding energies is the SCF-MO-CNDO theory with empirical bonding para-
meters, a Slater exponent for hydrogen of 1.2, and electron-repulsion integrals
evaluated from atomic spectra and either the Mataga or the Ohno formula.
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Table 6. Bonding energies calculated by extended Hiickel theory

H1? H2*? Experimental (eV)
H, 35.814 32.096 4.751
LiH 8.696 8.576 2.6
BeH, 12.752 12.439 6.9
BH, 16.398 17.265 12.1
CH, 19.552 21.697 18.18
NH, 15.640 17.051 12.93
H,0O 13.191 13.843 10.06
HF 8.923 9.103 6.11
SiH, 23.418 23.725 13.87
PH, 16.611 17.231 10.47
H,S 11.252 11.565 1.5
HCL 6.421 6.469 4.61
GeH, 23.542 23.583 12.5
AsH, 16.353 17.011 9.1
H,Se 11.109 11.281 6.6
HBr 5.545 5.576 3.92
SnH, 24.261 23.898 11.0
SbH,4 17.172 17.740 8.3
H,Te 10.925 10.828 5.8
HI 5.840 5.710 3.20
N, 10.182 9.903
CcO 10.760 11.225
CsS 7.780 7.190
CO, 19.745 16.856
ocCs 16.832 14.417
CS, 12.985 11.980
NNO 15.785 11.724
SO, 17.287 11.177
0, 7.133 6.345
CH, 19.792 20.071 17.530
C,H, 24.883 26.770 24.357
C,H¢ 30.781 34.298 30.818
C;H, 42.037 46.994 43.563
B,H, 23.475 25.947 26.004
LiF 15.503 © 5940
F, 2.404 1.653
Cl, 2.309 2.508
Br, 1.610 1.991
I, 2447 1.557
CIF 4238 2.668
BrF 5.392 2.682
BrCl 2.130 2334
IF 6.771 291
ICl 2.753 2.190
1Br 2073 1.928
CH,F 21.413 23.005 18.384
CH,C1 17.272 19.140 17.154
CH;Br 16.167 18.052 16.640
CH,! 16.395 18.228 15931
HCN 16.420 16.442 13.537
CH,CN 28.070 29.533 26.586
FCN 15.851 13.529
CICN 14.473 12.310
BrCN 14.113
ICN 14.348 11.159

*'H1 Extended Hiickel Theory with Zj = 1.0.
H?2 Extended Hiickel Theory with Zy =1.2.
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