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A semi-empirical SCF-MO theory is developed using the CNDO (complete neglect of differential 
overlap) approximation, with atomic parameters derived previously from atomic valence-state energies, 
interatomic electron-repulsion integrals calculated by the Mataga or Ohno formulae, and bonding 
parameters calibrated using the bonding parameters of binary hydrides. Bonding energies of the other 
molecules are calculated and found to be in much better agreement with experiment than those cal- 
culated from either the Pople-Segal CNDO/2 theory or the Extended Hfickel Theory. 

Es wird eine semiempirische SCF-MO-Methode unter vollstgndiger Vernachl~issigung der 
differentiellen Oberlappungen (CNDO) entwickelt. KfirzlichanValenzzustandsenergienangepagte 
Atomparameter werden verwendet, y-Integrale werden nach Mataga oder Ohno bestimmt, die 
Bindungsparameter werden an experimentellen Daten der bin~iren Hydride justiert. Bindungsenergien 
einer Vielzahl von Molekiilen ergeben sich damit besser als mit der CNDO/2- oder der erweiterten 
Hiickel-Methode. 

Une th6orie semiempirique SCF-MO est d6veloppbe en utilisant l'approximation CNDO 
(n6gligence complete du recouvrement diff6rentiel), aussi bien des param6tres atomiques qui ~taient 
deriv6s des 6nergies d'~tat valence atomique, des integrals de la repulsion 61ectronique interatomique 
calculus selon Mataga ou Ohno, et des param6tres des liaison assimil6s par des param6tres de liaison 
d'hydrures binaires. Les 6nergies de liaison pour des autres mol6cules calcul6es ainsi sont en meilleur 
accord avec l'exp6rience que les valeurs calculus /i l'aide des m6thodes soit Pople-Segal CNDO/2 
soit d'Hfiekel 6tendue. 

1. Introduction 

Two types  of a p p r o x i m a t e  M o l e c u l a r  O r b i t a l  T h e o r y  have been appl ied  to 
all valence e lect rons  in molecules ;  the  i ndependen t  e lec t ron molecu la r  o rb i t a l  
theory  as typif ied by the Ex tended  Hi ickel  T h e o r y  (EHT) [1],  and  the a p p r o x i m a t e  
self consis tent  field mo lecu l a r  o rb i t a l  theory  ( S C F - M O T )  in which the R o o t h a a n  
equa t ions  are  s implif ied by  the ze ro -d i f f e r en t i a l -  over lap  a p p r o x i m a t i o n  (ZDO)  [2]  
in which the differential  over lap  is a ssumed  zero except  for the same orbi ta l .  

Pople ,  Sant ry  and  Segal  [3, 41 recent ly  ex tended  the Z D O  a p p r o x i m a t i o n  
to  mo lecu la r  o rb i ta l  ca lcu la t ions  inc luding  all valence electrons,  and  considered 
its effect on the invar iance  p roper t i e s  of  the  wave  funct ion [3].  I t  is poss ib le  to  m a k e  
Z D O - t y p e  a p p r o x i m a t i o n s  which preserve the invar iance  of the  wave funct ion 
to o r thogona l  t r ans fo rma t ions  a m o n g  orb i ta l s  cent red  on the same a tom.  The  
s implest  way  is tha t  of  " comple t e  neglect  of differential  over lap"  (CNDO) ,  in 
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which, all differential overlaps of the form ~b*(1) Cbz(l ) are assumed to be zero, even 
when the two overlapping orbitals are centred on the same atom. A less drastic 
approximation is that of "neglect of diatomic differential overlap" (NDDO), in 
which the differential overlap of two orbitals is assumed to be zero only when 
they are centred on different atoms. However, NDDO has not yet been used in 
molecular calculations. 

The intermediate INDO theory differs from the CNDO theory in the reten- 
tion of the one-centre exchange integrals, and has been used to study small mole- 
cules and hydrocarbons [-5-8]. 

Pople and Segal [9, 10] have used the CNDO approximation in molecular- 
orbital calculations on a number of small molecules, and compared the calculated 
charge distributions, dipole moments, equilibrium configurations and force 
constants with those obtained from the exact Roothaan equations, as well as with 
experiment. Santry and Segal [4] have extended this work to molecules containing 
atoms in the second row of the periodic table, and included the 3d orbitals of these 
atoms in the basis set. The CNDO approximation has also been used recently to 
study dipole moments of organic molecules [11], hyperfine coupling constants 
in sigma-electron radicals [12], and the electronic excited states of small molecules, 
and of benzene and ethylene [13]. 

In this paper, calculations are made using the CNDO approximation, as 
formulated by Pople and Segal [10]. However, the parameters in the Hamiltonian 
matrix elements are evaluated by different methods. 

The Hamiltonian matrix elements are [9] 

Fkk = Ukk + (PAA -- �89 Pkk) TAg + ~ (P~a 7A. + VAS) (1) 
and B ~ A 

Fk ~ = _ �89 (flo + rio) Skt -- �89 nkl ?g .  , k ~ l (2) 

where the population matrix Pkl is 

Pkl = 2 y~ Ck*~ Czi. 
i 

The orbitals ~b, und q~l are on atoms A and B respectively. PAA is the total 
valence-shell electronic charge on atom A, defined by 

A 

PAA = ~ Pak. (3) 
k 

The summation extends over all valence-shell orbitals on the atom. Uk, is the 
diagonal matrix element of the k th orbital on atom A with respect to the kinetic 
energy and to the potential energy of the core of atom A; TAB represents "an 
average repulsion between an electron in a valence atomic orbital on A and 
another in a valence orbital on atom B" [3]. 

VAB is the interaction of an orbital on atom A with the core of atom B, and must 
be given the same value for all orbitals on atom A in order to preserve the invariance 
of the Roothan equations to atomic transformations [3]. 

flo and flo are bonding parameters characteristic of atoms A and B respectively, 
and Skt is the overlap integral, 

Sk,-  J'q~k (1)~b,(1)dVl �9 (4) 
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The atomic parameters derived from atomic spectra using valence-state ener- 
gies were derived in Part 1 [14]. In this paper the interatomic parameters, defined 
only with reference to molecules, are derived. The calculated molecular orbital 
energies are compared with experimental ionization potentials, using Koopmans' 
theorem in Part 3. Atomization energies of molecules are also considered, although 
they are given less accurately than the ionization potentials by approximate 
theories, since they represent small differences between two large quantities. They 
are sensitive to variations in flo, and are used to evaluate them. 

Dipole moments are considered in Part 4; also dealt with are nuclear quadru- 
pole coupling constants, which depend upon charge distribution, although less 
directly than dipole moments. 

2. Evaluation of Interatomic Parameters 

In Sections A and B, the evaluation of the interatomic parameters of the diago- 
nal matrix elements Fkk is described: Section A deals with the interatomic electron- 
electron repulsion integral, ~AB, and with the interatomic electron-core attraction 
integral, VAW The overlap integrals, Skl, and the bonding parameters, to, in the 
off-diagonal core matrix elements, HkZ, are dealt with in Sections B and C respec- 
tively. 

A. Interatomic Electron-Electron Repulsion Integrals 

The repulsion between an electron in the k th orbital of atom A, and one in the 
r th orbital of atom B is formally defined as 

l 
7k, = (kklrr) = X q~(1) rPk(1 ) qSY(2) G(2) d 1/1 dVa (5) 

r12 
which may be evaluated for orbitals of a specified functional form. The ~k, may 
then be averaged in some way to evaluate TAB. Pople and Segal [9, 10] equated TAB, 
for each pair of atoms, to the integral defined by equation (5) for valence-shell 
Slater's orbital, evaluated using formulae listed by Roothaan [15]. 

The CNDO approximation, however, is analogous to the ZDO approximation 
in re-electron theory, which is in better agreement with experiment if the inter- 
atomic electron-repulsion integrals, as well as the atomic ones, are reduced below 
their theoretical values [16, 17]. This is necessary because of the correlation be- 
tween electrons on different atoms [16, 18-22]. The interatomic electron-re- 
pulsion integrals in the SCF-MO-CNDO theory have therefore been evaluated 
by empirical formulae similar to those which have been proved successful in 
~z-electron theory, with the ZDO approximation [-17, 23-25]. This procedure is 
tested by comparing physical properties, calculated using both the empirical and 
the theoretical interatomic electron-repulsion integrals, with experiment. 

In the semi-empirical 7z-electron theory, the interatomic electron-repulsion 
integrals, 7k,, are functions of the internuclear distance, and of the atomic electron- 
repulsion integrals of the two atoms. These functions behave as follows [ 17, 23-25] : 

(i) As the internuclear distance approaches zero, the value of 7kr for two 
rc-orbitals of similar atoms approaches the atomic electron-repulsion integral, 
7kk, for a re-orbital of either atom, while for dissimilar atoms it approaches the 
arithmetic mean of the atomic electron-repulsion integrals for the ~-orbitals of 
the two atoms. 
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(ii) As the internuclear distance becomes infinite, the effect of correlation 
becomes small, and each electron-repulsion integral approaches its theoretical 
value, which is, at infinite distance, the electrostatic repulsion of two point charges. 

These conditions may be expressed mathematically as 

and 

lira 
RAI 1 ~ 0 "~kr = 1/2 (Tkk + 7, )  (6) 

lim 
RAB ~ Oe 7k~= 1/RAB (7) 

where the k th and r th orbital are on atoms A and B respectively. The Pariser-Parr 
formula is suitable only for z-systems and is not considered here [17]. 

Several other formulae for the interatomic integrals have been suggested, which 
have the correct asymptotic behaviour, and can be used at all internuclear distances. 
Mataga [23] used the formula 

1 2 
~ k , -  , a = (8)  

RAB + a Ykk -~- 7rr 

In conjugated molecules [26], equation (8) leads to smaller Yk~ than the Pariser- 
Parr formula. Bloor and Brearley [27] have found that the use of equation (8) 
leads to more accurate predictions of the electronic spectra of alternant hydro- 
carbons. 

Another formula is that of Ohno [24]: 

1 2 
?kr-- ~ ,  a = (9 )  

7kk ~- ~;rr 

For conjugated hydrocarbons [26], equation (9) leads to values of ~k, about 
equal to those found from the Pariser-Parr formula, in the range of RAB in which 
their equation is applied. These two formulae provide a representative sample of 
the values of 7k, used in semi-empirical molecular orbital calculations on ~r- 
electron systems [26]. 

Miller et al. [28] used theoretical interatomic electron-repulsion integrals, but 
modified the Slater exponent of the orbitals so that the atomic electron-repulsion 
integrals agreed with semi-empirical values, derived from atomic spectra. This 
implies that the effects of correlation, and reorganization of the a-electrons, may 
be accounted for by using"effective atomic orbitals" more diffuse than actual atomic 
orbitals. However, interatomic electron-repulsion integrals evaluated by this 
method are almost identical [29] to those found from Ohno's formula, and will 
not be considered separately. 

Three different ways of estimating electron-repulsion integrals are compared 
here: 

(i) All the electron-repulsion integrals, both atomic and interatomic, are 
calculated by evaluating the theoretical integral, equation (5) for valence-shell s 
orbitals, as in the work of Pople and Segal [9, 10]. 

(ii) Atomic electron-repulsion integrals are evaluated from valence state 
energies [14] and interatomic integrals by the Mataga formula [23], which is 
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here adapted to calculations including all valence electrons. 

1 2 
a = (10) 

TAB RAI 3 + a ~AA -~ ~BB 

where ~ h  and ~*B are atomic limits, defined in Paper 1 of this series [14]. 
(iii) Atomic integrals are evaluated as described in Paper 1 [14], and inter- 

atomic integrals by Ohno's formula [24], modified to apply to all valence electrons. 

1 2 
a - (11) 

7A13 = ~AAB + a2 ' T*A ~- 7~B 

In this series, molecular properties are computed, using electron-repulsion 
integrals evaluated by all three methods. It is shown that methods (ii) and (iii) 
are significantly better than method (i). This justifies the use of electron-repulsion 
integrals derived from atomic spectra. The core attraction integrals VAB are 
evaluated from gAB = - - Z  B ~AB as in the CNDO/2 theory [10] so that the penetra- 
tion integrals vanish. 

B. Overlap In tegrals  

Overlap integrals for Slater orbitals, of principal quantum number 1, 2, 3 or 5 
may be evaluated analytically by the methods of Mulliken et al. [37]. The orbital 
exponents Z '  and the effective principal quantum numbers n' are given by Slater's 
rules [30]. 

In the hydrogen atom, there is no screening, so Z~ = Z n = 1, and the Slater or- 
bital is identical to the exact wave function. In the hydrogen molecule, however, 
it has been found [31] that the lowest energy for an LCAO-MO wave function is 
obtained for Zh = 1.2. Also, in accurate molecular calculations for other mole- 
cules [32], using the Roothaan equations, in which the hydrogen exponent has 
been varied, the value Z~ = 1.2 leads to lower energies than Zh = 1.0. Physically, 
this is due to the fact that the contraction of the hydrogen orbital leads to more 
stable bonding [33]. Pople and Segal [9, 10] used Z~ = 1.2, but Hoffmann [1] 
in the Extended Htickel Theory used Zh = 1.0. In the paper both values are used, 
and a comparison is made on the basis of computed physical properties. It will be 
shown that Zh = 1.2 is preferred in the semi-empirical SCF-MO-CNDO theory, 
since it leads to more accurate bonding energies. 

For n = 4, the radial function, according to Slater's rules is [30] 

R4(r  ) = N4 r2.7 e-Z',/3.7 ao. (12) 

Overlap integrals for such an orbital cannot be evaluated analytically, because 
of the non-integral power of r, which is present as a factor. This difficulty can be 
avoided by using an approximate orbital, which is a linear combination of orbi- 
tals for which overlap integrals can be evaluated. The approximate combination 
is obtained by assuming that R 4 can be interpolated between R a and R 5 in the 
same way that the corresponding n' is interpolated. Two forms for the approximate 
orbital were tried: 

R'4(r) = N ~  (0.3R 3 q- 0.7R5) = N~ (0.3r 2 e -z 'r/3 ao -t- 0.7r 3 e -z'r/4"~ (13) 

and 
R~,(r) = N~  (0.3 r 2 + 0.7 r 3) e-z'~/3.7,o (14) 
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where the N's are normalization constants. The accuracy of these approximations 
to equation (12) may be examined by computing their overlap with the Slater 
orbital. The required overlap integrals are one-centre integrals, and can be com- 
puted using gamma functions. The overlap integrals of R 4 with R~ and R~ are 
0.99651 and 0.99979, respectively, showing that these simple interpolations are 
quite justified. In computations for orbitals with n = 4, Rg(r ) has been replaced 

. . . .  " 4 1 byR4(r),themoreaccurateofthetwoapproximations.ThevalueofN41sl.0138 53 . 
Leifer, Cotton and Leto [34] used series expansions of 8-10 terms each to 

approximate overlap integrals involving R4, but the simpler method proposed 
here should be as good, since R] is such a close approximation to R4. 

C. Bonding Parameters 

No provision has yet been made for empirical evaluation of any of the para- 
meters of the theory, using molecular properties. It was therefore decided to eval- 
uate empirical bonding parameters for each element. 

There are several molecular properties which could be used to evaluate the 
bonding parameters. In the Pariser-Parr theory of =-electron systems [17], the 
core resonance integral was evaluated using electronic spectra, while Pople [35] 
was concerned with ground state ionization potentials, electron affinities, re- 
sonance energies, and charge distributions. Dewar and Gleicher [36] have pointed 
out that, in a semi-empirical theory, ground-state properties should be calculated 
with parameters evaluated from ground-state properties, since the use of para- 
meters evaluated from electronic spectra may include a correction for effects 
present only in excited electronic states. 

In these papers, ionization potentials, molecular bonding energies, dipole 
moments, and nuclear quadrupole coupling constants have been computed from 
the SCF-MO-CNDO theory. Preliminary calculations showed that the bonding 
energies are most sensitive to variations in the bonding parameters (Table 1). 
The following procedure was therefore used to evaluate the bonding parameters: 

(i) The bonding parameter for hydrogen, fl~, was chosen to give the correct 
dissociation energy for the hydrogen molecule. For hydrogen, the bonding mole- 
cular orbital is determined by symmetry to be 

(15) 

The dissociation energy is (as shown below) 

D~ = 2fi~ $12 + �89 (712 - 71,1 (16) 

which may be equated to the experimental value, 4.751 eV to find flo, for a given 
choice of the interatomic electron-repulsion integrals, and of the hydrogen ex- 
ponent (which determines the overlap integral $12). 

(ii) The bonding parameters for other elements were chosen to give the correct 
bonding energies of binary hydrides, AH,. The binary hydrides were chosen as the 
reference molecules because they form a series including a molecule for each ele- 
ment of interest. The bonding energy of each hydride, AH,, was computed for a 
range of values of the bonding parameter, flo. The details of this calculation, and 
the variation of the atomization energies with flo, are shown below. 
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The chosen bonding parameters, which give the experimental bonding energies, 
have been rounded off to the nearest tenth of an electron volt, since greater pre- 
cision would be inconsistent with the precision of most of the experimental bonding 
energies. Table 2 lists the bonding parameters for each choice of electron-repulsion 
integral and hydrogen exponent. 

Since the bonding parameter for each element is evaluated with reference to 
its hydrides, it depends on the value of the hydrogen exponent, so that the results 
of calculations on molecules, which do not contain hydrogen, depend indirectly 
on the choice of the hydrogen exponent in the calibration. It will be shown, 
however, that the value Z~ = 1.2, and the corresponding bonding parameters, 
lead to more accurate molecular energies. 

Table 2, Bonding parameters [~o (in eV) 

Code" M1 M 2  01 02  R1 R2 PS b 

Atomic Empirical c Empirical Empirical Theoretical d Theoretical Theoretical Theoretical 
parameters 

Interatomic Mataga  e Mataga  Ohno f Ohno Theoretical d Theoretical Theoretical 

TAB 

Hydrogen 1.0 1.2 1.0 1.2 1.0 1.2 1.2 
exponent Zh 

Evaluation Empirical ~ Empirical Empirical Empirical Empirical Empirical P o p l e a n d S e g a l  h 
of/~ ~ 

H 4.9 5.4 3.9 4.3 
Li 0.4 0.7 - 0 . 9  - 0 . 8  
Be 3.8 4.0 3.2 3.4 
B 5.8 5.6 5.2 5.0 
C 8.7 8.2 7,8 7.3 
N 9.6 8.8 8,0 7,3 
O 14.2 12.8 11.7 10.5 
F 19.2 17.2 15.7 14.1 

Si 5.0 5.2 4.6 4.7 
P 6.0 6.0 5.3 5.3 
S 6.7 6.5 5.8 5.6 
C1 9.3 8.9 8.1 7.8 
Ge 4.3 4.4 3.8 4.0 
As 4,6 4.7 4.0 4.1 
Se 5.7 5.7 5,0 4.9 
Br 7.3 7.2 6.4 6,3 

Sn 3.4 3.6 1.9 2.1 
Sb 4.5 4.7 3.9 4.2 
Te 5.7 6.1 5.1 5.4 
I 6.5 6.7 5.8 6.0 

5.4 5.2 9 
2.5 3.8 9 
4.3 5.2 13 
6.2 6.5 17 
9.1 9.0 21 

11,2 10.6 25 
16.1 14.7 31 
22.6 20.4 39 

a Arbitrary code for parameter set. 
b C N D O / 2  Method of Pople and Segal [10], 
~ F rom atomic spectra as described in Par t  1 El4]. 
d F rom theoretical integral formulae of Roothan - first row only, 
~ F rom Eq. (10). 
r F rom Eq. (11). 
g F rom hydride bonding energies as described in text. 
h By comparison with minimal-basis set calculations by Roothaan method. 
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The negative bonding parameter for lithium, for interatomic electron-repulsion 
integrals given by the Ohno approximation, indicates that the arithmetic mean of 
bonding parameters, used for Hk~ [9], breaks down in this case. The use of a geo- 
metric mean would resolve this particular difficulty, but it would require exten- 
sive computation to show that a geometric mean is better for all molecules. Also, 
the geometric mean does not have a theoretical basis. In this series the arithmetic 
mean has been used, and the bonding parameter for lithium has been treated 
like the others, even though it has the wrong sign. 

Table 2 also lists the Pople-Segal [9] bonding parameters for hydrogen and the 
first-row elements. The values of Santry and Segal [4] for second-row elements are 
not included, since they were published after the completion of the work described 
here. These parameters were chosen by comparing the coefficients of computed 
molecular orbitals, and the differences between orbital energy eigenvalues, with 
those obtained by accurate solution of the Roothaan equations for small mole- 
cules [9]. They are much larger than the empirical bonding parameters. A detailed 
comparison of the two sets of bonding parameters for first-row atoms is made 
by calculating molecular physical properties. It is noted here, however, that the 
empirical values are more consistent with the values of core resonance integrals 
in re-electron theories. For carbon, for example, Pople [35] showed that the re- 
sonance energy of benzene is correctly given for a carbon-carbon core resonance 
integral of 2.13 eV. Since the Overlap integral between two carbon ~z-orbitals 
at the nearest-neighbour distance in benzene is 0.248 [37], this corresponcls to a 
carbon bonding parameter of 8.6 eV. 

Clark and Ragle [38] have recently assigned the value 11.15 eV for the bonding 
parameter of carbon in order to fit the electronic spectra, but they have not proposed 
a general empirical scheme for the evaluation of bonding parameters, as is done 
here, nor tested their value in calculations on a wide variety of molecules. 

The exact electronic energy of a molecule can be written as [39] 

Eelee  t : EHF  + E . . . .  § I1".. (17) 

where Er~F is the Hartree-Fock energy for the best single-determinant wave func- 
tion and E .... is the correlation energy. In the semi-empirical theory described 
here, the parameters are adjusted to give the correct bonding energies, including 
correlation energy, even though the wave function is a single determinant. 

In order to determine the bonding energy of a molecule accurately from a single- 
determinant wave function, without using empirical parameters, it would be 
necessary to first determine EH~ from a complete SCF-MO calculation, and then 
either to calculate the exact energy by superposition of configurations [39], or 
to estimate the correlation energy, as in the approximate theory of Hollister and 
Sinanoglu [40]. The present method is much simpler, however, and can therefore be 
applied to larger molecules. Its validity is tested by examining the accuracy of 
bonding energies calculated in this way for molecules other than those used in 
the calibration of the bonding parameters. 

3. Calculation of Bonding Energies from the SCF-MO-CNDO Theory 

For a closed shell molecule with a single-determinant wave function the total 
electronic energy [35, 3] is 

- ~  ~ E i + V . .  (18) J ~ t o t a l  - -  2 tr P H § 
i 
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where P is the population matrix, H the core Hamiltonian matrix, E i the orbital 
energy eigenvalue and V,, the expectation value of the internuclear potential 
energy for a fixed nuclear configuration. Hence the bonding energy [41] is 

EB = ~ EA - E t o t a l  �9 (19) 
Thus A 

EB = 2 EA -- Ee - Vnn (20) 

where A 
Ee = �89 t rP(H + F) = �89 t rP  H q2 ~ E i .  (21) 

The atomic energy, EA, is the energy to remove all the valence-shell electrons 
from atom A, and E e the energy to remove the valence-shell electrons from the 
molecule. The successive ionization of electrons, from both atoms and molecules, 
requires increasing amounts of energy because: 

(i) the electrostatic repulsion of other electrons acting on the electron to be 
ionized decreases. This effect is incorporated into any SCF theory, since the varia- 
tion of the electrostatic potential with charge distribution is explicitly included. 

(ii) as electrons are removed, the remaining electrons are less screened from the 
nucleus. The orbitals are re-organized with a greater probability density near the 
nucleus, and the expectation value of the nuclear attraction is increased. This 
effect is not accounted for in SCF-MO calculations with a minimum basis, since 
the orbital parameters are assigned fixed values. The parameters evaluated from 
atomic spectra [14] are valid only for valence states close to electroneutrality. 
If the energy required to remove all the valence electrons from an atom is cal- 
culated from these parameters, it differs from the sum of experimental ionization 
potentials by [44], for example, 24.5 eV for C, and 171.0 eV for F. 

If, in calculating the bonding energy from equation (20), atomic energies were 
equated to the sum of the appropriate experimental ionization potentials, the 
effect of orbital reorganization would be included only in the atomic energy, and 
not in the molecular energy, so that the bonding energy would be seriously in 
error. Therefore the atomic and molecular energies must be calculated using the 
same approximations and parameters, so that the errors cancel. 

In the CNDO approximation, the energy of an atomic state is 

E = c O + ~ n k U k k + � 8 9  - 1 )  YAA (22) 

where nk is the number of electrons in the k th orbital, and the summations extend 
over all the valence-shell orbitals. Relative to the core state, when C o becomes 
zero, and for a state with ns s-electrons and np p-electrons, this becomes 

E = ns U~s + np Upp + (ns +np) (n~ + np - 1) 7AA. (23) 

The internuclear potential energy, V,,, is [3, 10] 

V.. = Z Z A Z B R x d .  (24) 
A>B 

The net electrostatic interaction between any two atoms is consequently 

EAB = V. .  + PAA NAB "~- PBs VBA + PAA PBB 7AB (25) 
where 

VAB = -- ZB YAB" (26) 
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Thus for two neutral atoms, with atomic populations PAA and PBB equal to the 
atomic core charges ZA and ZB, the use of the pointcharge expression, equation 
(24), leads to a net electrostatic repulsion, 

E~ = Z ,  ZB(R21 - TAB) (27) 

which makes it impossible to predict accurate bonding energies for any reason- 
able choice of parameters. 

The matrix elements Hl l and Ht2 for hydrogen are [10, 9] 

Hia = Ull - 712 (28) 
and 

H12 = -fl~ (29) 

Combining these with equations for Fll and F12, where Fll = Ull + �89 Yl~ and 
F12 = _flo $12-  �89 712, the electronic energy is 

Ee = 2 U l l  + �89 711 - 3712 -2fl~ + V., (30) 

and the bonding energy is 

Ea=Zfl ~  3712 - �89 - V,. (31) 

since for hydrogen, the atomic energy En equals the local core-Hamiltonian matrix 
element U11. If the internuclear potential energy has- the point-charge form, the 
bonding energy is then 

EB ___ 2f i l l  S _.]_ g 3~1 2 0  3 - �89 ~11 - R2d. (32) 

If Eq. (32) is solved simultaneously with the equation for the ionization po- 
tential of hydrogen (Paper 3), 

I - -  7.171 + flo S + �89 712 (33) 

then For the experimental bonding energy and ionization potential, with ~1 
determined from the Pariser approximation [45], and Z~ = 1.2, the interatomic 
electron-repulsion integral Y12 equals 28.052eV, and the bonding parameter 
flo is -5.748 eV. These values are absurd, however, since ~12 is much higher than 
even the theoretical ~11 for hydrogen, 20.408 eV, and the bonding parameter has 
the wrong sign, which implies that the anti-bonding orbital is the occupied orbital. 

If, on the other hand, the bonding parameter is chosen to give the correct 
dissociation energy for reasonable values of 712, then the bonding parameter is 
14.074 eV, and 10.759 eV, when 712 is determined by the Mataga, and by the Ohno 
formula respectively. The calculated ionization potentials are then 20.53 eV, and 
19.78 eV, in the two cases, in very poor agreement with the experimental value of 
15.45 eV. 

The point-charge form for V,, is therefore unsatisfactory. Dewar and Klop- 
man [-6] have suggested that this is because the method of assignment of atomic 
parameters fails to allow for the reorganization of atomic orbitals, and changes 
in the effective nuclear charges, upon molecule formation, and that this error 
must be compensated by altering the form of 1/",,. 

The simplest satisfactory assumption is that the net electrostatic interaction 
between two neutral atoms, E~ vanishes, so that 

Vnn = E ZA ZB TAB (34) 
A>B 
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as assumed by Chung and Dewar for re-electron systems [51]. The electrostatic 
interaction between any two atoms is then simply the interaction of net charges. 

EAB = (PAA -- ZA) (PBB -- ZB) 7A~. (35) 

With this choice of V,,, accurate bonding energies and ionization potentials 
can be obtained for reasonable parameter values. For hydrogen, substitution of 
Eq. (33) into Eq. (30) leads to the bonding energy 

E B = 2fl~ S + �89 - 711) (36) 

which may be solved simultaneously with Eq. (32) for the ionization potential to 
give 712 = 10.766 eV and/~~ = 4.293 eV (for Z ) =  1.2). 

Dewar and Klopman [6] have objected to the use of Eq. (34) in calculations 
including all valence electrons, since they have found that a net repulsive inter- 
action between neutral atoms at short internuclear distances is necessary in order 
to predict potential energy minima. In this paper, however, it is found that Eq. (34) 
leads to satisfactory prediction of bonding energies at experimental bond lengths. 

The final formula used to compute bonding energies from the semi-empirical 
SCF-MO theory is found by substituting Eq. (18) and (34) into Eq. (20) so that 

E .  = Z E A  - -  �89 tr P H - Z Ei - • ZA ZB ~)AB (37) 
A i A > B  

where E A is given by Eq. (23). 

4. Comparison of  Calculated Bonding Energies with Experiment 

The experimental data for bonding energies were taken from the JANAF 
Interim Thermochemical Tables [47] and anharmonicity corrections were neg- 
lected, since the effect on E B is only 0.004 eV in hydrogen, less for other diatomics 
[47], and unknown for most polyatomics. 

For molecules not listed in the JANAF tables, the vibrational frequencies 
were taken from Herzberg [46, 48] and the heats of formation at 298 ~ were 
taken from National Bureau of Standards data [57] for BrC1, IC1, C2H6, Calls, 
ICN, CH3CN, CHaC1, CHaBr , and CH3I. The heats of formation of Group IV, 
V, VI hydrides were determined by Gunn and Green [49] using an explosive de- 
composition method, and the dissociation energies of CIF, BrF, and IF were 
found from appearance potentials by Irsa and Friedman [50]. 

The vibrational energy of propane was extrapolated from that of methane and 
ethane, since the vibrational frequencies are not all known [48]. The unknown 
vibrational frequencies of IF and BrC1 were assumed to be equal to the arithmetic 
mean of the corresponding pure halogen frequencies, since this approximation 
is accurate within 50 cm -1 for the other four interhalogen molecules [47, 57]. 

The experimental bonding energies of the binary hydrides used to calibrate 
the bonding parameters have been rounded off to their probable precision. For 
other molecules, the bonding energies are given to 0.001 eV from the experimental 
data, although this exaggerates their precision in many cases. 

Bonding energies calculated from SCF-MO theory using empirical bonding 
parameters are shown in Table 3, for molecules other than those used in calibra- 
tion. The energies are fairly accurate on the whole, in contrast to those calculated 
16 Theoret. chim. Acta (BerL) VoI. 11 
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using the Pople-Segal bonding parameters so that the theory includes correla- 
tion energy reasonably accurately. 

The bonding energies calculated for Z~ = 1.2 are more accurate than those for 
Zh = 1.0. When electron-repulsion integrals evaluated from atomic spectra are used, 
the bonding energies for Z~ = 1.2 (Columns M 2 and 02) are more accurate for all 
the molecules considered, except SO2, I2, IF, IBr, CH3I, and (for interatomic 7AB 
calculated from the Mataga formula only) LiF. When theoretical electron-re- 
pulsion integrals are used, more accurate bonding energies are predicted for 
Z~ = 1.2 (Column R2), except for LiF, CH3F , and F 2. The value 1.2 is therefore 
chosen as the better value for the Slater exponent of hydrogen in the SCF-MO 
calculations. 

Table 3. Bonding energies calculated by SCF-MO theory with C N D O  approximation and empirical 
bonding parameters 

Parameter M 1 M2 O1 02 R 1 R2 Exptl, 
set (eV) 

Nz 12.325 10,480 12.402 10.839 12.997 11.566 9,903 
CO 13.838 11.931 13.798 12.166 14.136 12.579 11.225 
CS 8.093 7,414 8,660 7.970 7.190 
CO 2 22.032 18,981 21.310 18.592 22.578 20.160 16,856 
OCS 16.142 17.968 15.984 14.417 
CS2 14.154 13,012 14.262 13.090 11.980 
NNO 17.401 14.986 18.899 16.634 11.724 
SOz 11.085 9.494 11.255 9.761 11.177 
0 3 11.995 9.804 11.009 9,034 6,345 
C2H z 19.333 17.724 19.969 18.264 20.003 19.448 17.530 
C2H4 25.290 24.250 25.609 24.366 25.169 24.831 24,357 
C2H 6 31.603 31.032 31.650 30.799 31.077 30.867 30.818 
C3H 8 46.431 45.230 46.250 44.705 45.699 45,373 43.563 
12I~ 6 28.657 27.706 27.523 26.580 28.398 27.652 26.004 
LiF 5,970 5.551 6.557 6.290 4.101 3.822 5.940 
F 2 2.887 2.060 2.627 1.983 0.991 0.064 1.653 
Clz 3.491 3.178 3,398 3,170 2.508 
Br2 2.767 2.687 2.774 2.695 1,991 
12 1.677 1.837 1.750 1.907 1.557 
CIF 3.882 3,191 3.604 3.079 2.668 
BrF 3,369 2.799 3.216 2.778 2.682 
BrC1 2.997 2.804 2.977 2,826 2,334 
IF 1,524 1.153 1.570 1,295 2.91 
ICI 2,382 2.307 2.405 2.368 2.190 
IBr 2.162 2.201 2.212 2.251 1,928 
CH3F 19.558 18.634 19.126 18.234 18.813 17.847 18.384 
CHaCI 17,680 17,329 17.669 17,211 17,154 
CH~Br 16.808 16.608 16.891 16.532 16.640 
CH3I 15.789 15,733 15.944 15.727 15.931 
HCN 16.113 14,705 16.367 14.996 16.410 15.603 13,537 
CH3CN 30.866 28,710 26,586 
FCN 19.703 17.167 19.265 17.113 20.114 18.199 13.529 
C1CN 15.262 17.159 15.468 12.310 
BrCN 16.051 16.183 14.589 
ICN 14.868 13.333 15.094 13.658 11.159 
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O n  c o m p a r i n g  the resul ts  in Table  3 for Zh  = 1.2 and  different choices of elec- 
t ron - repu l s ion  integrals ,  the  bond ing  energies ca lcu la ted  using theore t ica l  in tegrals  
are  less accura te  than  those  ca lcu la ted  using integrals  eva lua ted  f rom a tomic  
spectra,  except  for C2H 6 and  B/H6 ,  for which the b o n d i n g  energies ca lcula ted  
using theore t ica l  in tegra ls  a re  more  accura te  than  those  ob t a ined  using the M a t a g a  
formula ,  bu t  no t  the O h n o  formula .  

Table 4. Bondin9 energies calculated by SCF-MO theory with CNDO approximation and Pople-Segal 
bondin 9 parameters 

Parameter set Mpa OP a Rpa Experimental (eV) 

H 2 14.700 13.209 14.398 4.751 
LiH 9.542 10.509 7.987 2.6 
Bell 2 25.117 27.240 23.591 6.9 
BH 3 44.931 48.392 43.312 12.1 
CH,~ 62.505 67.602 61.033 18.18 
NHa 47.787 52.018 45.279 12.93 
H20 32.552 35.672 31.020 10.06 
HF 17.639 19.271 16.366 6.11 
N 2 51.344 55.082 48.316 9.903 
CO 46.269 49.706 44.377 11.225 
CO 2 78.196 83.951 74.404 16.856 
NNO 76.386 82.387 70.354 11.724 
0 3 45.767 50.183 38.955 6.345 
C 2 H  2 79.055 85.021 78.328 17.530 
C2H 4 96.015 103.204 93.889 24.357 
C 2 H  6 113.428 121.945 110.297 30.818 
Call s 167.580 179.622 163.209 43.563 
B2H 6 110.206 117.628 105.457 26.004 
LiF 15.955 17.300 12.639 5.940 
F 2 11.672 12.850 8.308 1.653 
CH3F 66.474 71.449 63.159 18.384 
HCN 63.955 68.801 61.784 13.537 
CH3CN 118.383 126.709 114.546 26.586 
FCN 73.472 78.570 69.548 13.529 

a MP Mataga TAB, Pople and Segal bonding parameters. 
OP Ohno TAB, Pople and Segal bonding parameters. 
RP Theoretical YAa, Pople and Segal bonding parameters. 
Zh = 1.2 in all calculations. 

The  b o n d i n g  energies do  no t  p rov ide  a conclusive choice be tween the M a t a g a  
and  O h n o  formulae  for i n t e r a tomic  e lec t ron- repu ls ion  integrals ,  since each leads 
to more  accura te  b o n d i n g  energies for a b o u t  the same n u m b e r  of  molecules.  As 
in the ca lcu la t ion  of  mo lecu l a r  ion iza t ion  potent ia l s ,  it  seems tha t  the exact  values 
of  the i n t e r a tomic  in tegra ls  do  no t  mat te r ,  p rov ided  tha t  the a tomic  integrals ,  
and  the a tomic  l imit  of  the i n t e r a tomic  integrals ,  are  eva lua ted  f rom a tomic  spectra.  

Table  4 shows tha t  the  Pop le -Sega l  b o n d i n g  pa rame te r s  are  comple te ly  in- 
adequa te  for the  ca lcu la t ion  of  to ta l  mo lecu la r  energies,  since the p red ic ted  b o n d i n g  
energies a re  h igher  than  the exper imen ta l  by  factors  ranging  f rom 3 to 8. The  

16" 
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bonding energies calculated using theoretical electron-repulsion integrals (Co- 
lumn RP) are slightly better than the others, MP = Mataga and OP = Ohno) but 
the difference is negligible in view of the magnitude of the errors of all the cal- 
culated energies in Table 4. It should be noted that, since the bonding energies 
are too high rather than too low, the errors cannot be blamed on the omission of 
correlation energy, but are due simply and solely to the large values of the Pople- 
Segal bonding parameters [9]. 

5. Comparison with Extended Hiickel Theory 

In the Extended Htickel Theory, E e cannot be evaluated from Eq. (21), 
since the one-electron Hamiltonian, o hell, is not separated into core and electron- 
repulsion terms. Hoffmann and Lipscomb [1, 52] equated the total electronic 
energy of closed-shell molecules to twice the sum of occupied orbital energies, 
as in the Hiickel n-electron theory [53, 54]. 

Eelec t = 2 E E i '  (38) 
i 

From Eq. (38) and (19), the bonding energy is given by 

EB = ~ EA -- 2 ~ E,. (39) 
A i 

The internuclear potential energy, Vnn, is not included in this calculation of the 
bonding energy, since Hoffmann [1] found that the EHT predicts potential energy 
minima for most stable molecules (although not hydrogen), which vanish when 
Vnn is included. He assumed therefore that 

"the method of guessing the matrix elements simulated within the electronic 
energies the presence of nuclear repulsions at small distances," [1] 

and suggested that this effect is due to a rough cancellation of electron-electron 
and nuclear-nuclear repulsions, neither of which is included explicitly in the EHT. 
Allen and Russell [55] have shown that bond angles are predicted correctly from 
Hartree-Fock calculations, using a simple sum of orbital energies as in Eq. (38), 
except for highly ionic molecules; so that the EHT may also be expected to predict 
bond angles correctly. This does not apply, however, to bond lengths [55]. 

As in the SCF theory, the atomic and molecular energies must be calculated 
using the same approximations and parameters, so that there is a cancellation of 
errors in the bonding energy. By analogy with Eq. (38), the valence-shell energy 
of an atom with ns s-electrons and np p-electrons is 

EA = ns hss + n, hpp. (40) 

Hoffmann and Lipscomb [1, 56] have used instead 

EA ---- (ns -- 1) hs~ +(np + 1) hpp (41) 

for boron and carbon, since they found that the ratios of bonding energies for 
different boron hydrides are correctly predicted using Eq. (41) in a preliminary 
calculation [56] with all off-diagonal matrix elements given by 

hkl = K Su,  K = 21 eV. (42) 
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This procedure is not justified, however, since Eq. (40) and not Eq. (41) refers to 
the ground state of an atom. Table 5 shows that the procedure of Hoffmann and 
Lipscomb is not only theoretically invalid, but also leads to much less accurate 
bonding energies than are obtained using Eq. (40). 

The bonding energies calculated using the Extended Hfickel Method are 
given in Table 6. The results for some molecules are quite accurate, but the theory 
is seriously in error for the binary hydrides, and especially hydrogen, just as in 
the prediction of ionization potentials. For the hydrides, the differences between 
the results for the two values of Zh are insignificant in view of the errors. For 
organic molecules, however, the bonding energies are predicted relatively accu- 
rately by the EHT, and the values for Zh = 1.0 (Column H 1) are more accurate 

Table 5. Comparison of EHT bonding energies (Z~ = 1.0) with those calculated as per Hoffmann and 
Lipscomb 

This work As per Hoffmann Experimental (eV) 
and Lipscomb 

CH  4 19.552 29.291 18.18 
C2H 2 19.792 39.270 17.53 
C2H4 24.883 44.361 24.36 
C2H 6 30.781 50.259 30.82 
C3H 8 42.037 71.254 43.56 
BH 3 16.398 22.889 12.1 
B2H 6 23.475 36.457 26.00 

than those for Z~ = 1.2. Thus it seems that the best value for the Slater exponent 
of hydrogen in molecules is 1.2 in the SCF-MO theory as claimed by Pople 
and Segal [9], and 1.0 in the EHT, as used by Hoffmann [1]. Since the value of Z~ 
determines the behaviour of the molecular orbitals near a hydrogen nucleus, it 
should not depend on the theory used to calculate the orbitals, but the difference 
is probably due to a cancellation of errors in one theory or the other. 

It is interesting to compare the bonding energies for BH a and B/H 6 in the two 
theories. In the SCF-MO theory, the bonding energy of BzH 6 is predicted as 
accurately as that of many other molecules, despite the possible uncertainty due 
to the use of the unstable molecule, BH3, to calibrate the bonding parameter for 
boron. The EHT, on the other hand, predicts incorrectly that B2H 6 is unstable 
with respect to BH3, even though the EHT was originally developed for calcula- 
tions on boron hydrides [56, 52]. This is another example of the unreliability of 
the EHT. 

In summary, therefore, the best of the theories considered for the calculation of 
bonding energies is the SCF-MO-CNDO theory with empirical bonding para- 
meters, a Slater exponent for hydrogen of 1.2, and electron-repulsion integrals 
evaluated from atomic spectra and either the Mataga or the Ohno formula. 
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Table 6. Bonding energies calculated by extended Hiickel theory 

H 1" H 2 a Experimental (eV) 

Hz 35.814 32.096 4.751 
LiH 8.696 8.576 2.6 
Bel l  z 12.752 12.439 6.9 
BH 3 16.398 17.265 12.1 
CH 4 19.552 21.697 18.18 
NH 3 15.640 17.051 12.93 
H 2 0  13.191 13.843 10.06 
H F  8.923 9.103 6.11 
Sill 4 23.418 23.725 13.87 
PH 3 16.611 17.231 10.47 
HzS 11.252 11.565 7.5 
HC1 6.421 6.469 4,61 
GeH 4 23.542 23,583 12,5 
AsH 3 16,353 17.011 9,1 
H2Se 11,109 11.281 6.6 
HBr 5,545 5.576 3.92 
SnH 4 24.261 23,898 11.0 
SbH 3 17.172 17.740 8.3 
H2Te 10.925 10.828 5.8 
HI 5.840 5,710 3.20 
N 2 10.182 9.903 
CO 10.760 11.225 
CS 7.780 7.190 
CO2 19.745 16.856 
OCS 16.832 14.417 
CS2 12.985 11.980 
N N O  15.785 11.724 
SO e 17.287 11.177 
0 3 7.133 6,345 
C2H 2 19.792 20.071 17.530 
C2H 4 24.883 26.770 24.357 
C2H 6 30.781 34.298 30.818 
C3H s 42.037 46.994 43.563 
B2H 6 23.475 25.947 26.004 
LiF 15.503 5.940 
F 2 2.404 1.653 
C12 2.309 2,508 
Br 2 1.610 1.991 
I 2 2.447 1.557 
C1F 4.238 2.668 
BrF 5.392 2.682 
BrC1 2.130 2.334 
IF 6.771 2.91 
IC1 2.753 2.190 
IBr 2.073 1.928 
CH3F 21.413 23.005 18.384 
CH3CI 17.272 19.140 17.154 
CH3Br 16.167 18.052 16.640 
CI-I3I 16.395 18.228 15.931 
H C N  16.420 16.442 13.537 
CH3CN 28.070 29.533 26.586 
FCN 15.851 13.529 
C1CN 14.473 12.310 
BrCN 14.113 
ICN 14.348 11.159 

a "H 1 Extended Hiickel Theory with Z~ = 1.0. 
H 2  Extended Hiickel Theory with Z~ = 1.2, 
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